Some Stronger Forms of βwg-Continuous Maps in Topological Spaces

Kantappa. M. Bhavikatti (*1) and Govindappa. Navalagi (2)

*1HOD, Department of Mathematics, Government First Grade College for Women, Jamakhandi -587301. Karnataka, INDIA ² Department of Mathematics, KIT Tiptur-572202. Karnataka, INDIA

Abstract: In this paper, we introduce and study some stronger forms of β wg-continuous functions namely, strongly β wg-continuous, perfectly β wg-continuous and completely β wg-continuous functions in topological spaces. Further we introduce the concepts of strongly β wg-closed and strongly β wg-open maps and obtain some of their properties.

MSC 2010: 54A05, 54A10, 54C08.

Keywords: β wg-closed sets, strongly β wg-continuous functions, perfectly β wg-continuous functions, strongly β wg-closed maps and strongly β wg-open maps.

I. INTRODUCTION

In 1983, Monsef et. al. [1] introduced β -open sets and β -continuity in topology. In 1986, Andrijevic [2], introduced semipre-open sets. In 1970, Levine [9] introduced the new class of generalized closed (briefly, g-closed) sets in topological spaces. The generalized continuity was studied in recent years by Balachandran et.al. Devi et.al, Maki et.al, [4, 6, 10]. Levine [7], Noiri [19] and Arya and Gupta [3] introduced and investigated the concept of strongly continuous, perfectly continuous and completely continuous functions respectively which are stronger than continuous functions. Later, Sundaram [21] defined and studied strongly g-continuous functions and perfectly g-continuous functions in topological spaces. Generalized closed (g-closed) maps were introduced by Malghan [12]. In 2013, P.G.Patil et al. [20] studied the concept of stronger forms of w α - continuous functions in topological spaces. Recently G.B.Navalgi et.al., [16],[17] introduced and studied the concept of β wg-closed sets, β wg-continuity, β wg-irresolute functions, β wg-closed maps, β wg-open maps and β wgT_b-spaces for general topology.

In this paper, we define and study some stronger forms of β wg-continuous functions namely, strongly β wg-continuous, perfectly β wg-continuous and completely β wg-continuous functions in topological spaces. Further, we introduce the concepts of strongly β wg-closed and strongly β wg-open maps and obtain some of their properties.

II. PRELIMINARIES

Throughout this paper (X,τ) , (Y,σ) and (Z,η) represent non-empty topological spaces on which no separation axioms are assumed unless explicitly stated and they are simply written as X, Y and Z respectively. For a subset A of a topological space (X,τ) , the closure of A and the interior of A with respect to τ are denoted by cl(A) and int(A) respectively. The complement of A is denoted by A^c . The α -closure (resp. pre-closure and β -closure) of A is the smallest α -closed (resp. pre-closed and β -closed) set containing A and is denoted by $\alpha cl(A)$ (resp. pcl(A) and $\beta cl(A)$).

Before entering into our work we recall the following definitions from various authors.

Definition 2.1: A subset A of a topological space (X,τ) is called

- (i) preopen [13] if $A \subseteq int (cl (A))$ and preclosed if $cl (int(A)) \subseteq A$.
- (ii) α -open [18] if $A \subseteq \text{int}$ (cl (int (A))) and α -closed if cl(int(cl(A))) $\subseteq A$.
- (iii) semipre-open [2] (β -open[1]) if $A \subseteq cl(int(cl(A)))$ and semipre-closed (β -closed) if int (cl (int (A))) $\subseteq A$.

Definition 2.2: A subset A of a topological space (X,τ) is called a

- (i) g-closed [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (ii) g*p-closed [22] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) .
- (iii) β wg-closed [16] if β cl(A) \subset U) whenever A \subset U and U is α g-open) in (X, τ).

Definition 2.3: A of a topological space (X, τ) is called a $_{Bwg}T_b$ -space [17] if every β wg-closed set is closed.

Definition 2.4: A function $f: (X,\tau) \to (Y,\sigma)$ is called pre-continuous [13] (resp. g-continuous [4], β wg-continuous [17] and g*p-continuous [22]) if $f^1(V)$ is pre-closed (resp. g-closed, β wg-closed and g*p-closed) in X for every closed set V in Y.

Definition 2.5: A function $f: (X, \tau) \to (Y, \sigma)$ is called a irresolute [5] (resp. gc-irresolute [6] and β wg-irresolute [17]) if if $f^{-1}(V)$ is semi-closed (resp. g-closed and β wg-closed) in X for every semi-closed (resp. g-closed and β wg-closed) set V of Y.

Definition 2.6: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a

- (i) Strongly continuous [7] if f¹(V) is both open and closed in X for each subset V in Y
- (ii) Perfectly continuous [19] if f⁻¹(V)) is both open and closed in X for each open set V in Y.
- (iii) Completely continuous [3] if $f^1(V)$ is regular-open in X for each open set V in Y.
- (iv) Strongly g-continuous [21] if $f^{-1}(V)$ is open in X for each g-open set V in Y.
- (v) Perfectly g-continuous [21] if $f^{-1}(V)$ is both open and closed in X for each g-open set V in Y.

Definition 2.7: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a

- (i) M-preopen (resp. M-preclosed) [15] if f (V) is preopen (resp. preclosed) set in Y for every preopen (resp. preclosed) set V of X.
- (ii) M- β -open (resp. M- β -closed) if f(V) is β -open (resp. β -closed) set in Y for every β -open (resp. β -closed) set V of X.
- (iii) βwg-open (resp. βwg-closed) [17] if f (V) is βwg-open (resp. βwg-closed) in Y for each open (resp. closed) set V in Y.

III. ON STRONGLY BWg-CONTINUOUS FUNCTIONS

We define and study the following

Definition 3.1: A function $f: X \to Y$ is called strongly β wg-continuous if the inverse image of every β wg-closed set in Y is closed in X.

Theorem 3.2: A function $f: X \to Y$ is a strongly β wg-continuous if and only if the inverse image of every β wg-closed set in Y is closed in X.

Proof: Suppose f: $X \to Y$ is a strongly β wg-continuous. Let K be a β wg-closed set in Y. Then Y-K is β wg-open set in Y. Since f is a strongly β wg-continuous, $f^1(Y-K)$ is β wg-open in X. But $f^1(Y-K) = X-f^1(K)$. Thus $f^1(K)$ is closed set in X.

Conversely, suppose that the inverse image of every β wg-closed set in Y is closed in X. Let U be a β wg-open set in Y. Then Y-U is β wg-closed set in Y. By theory $f^1(Y-U)$ is closed set in X. However $f^1(Y-U) = X - f^1(U)$ is closed set in X. Therefore, $f^1(U)$ is open in X and consequently, f is a strongly β wg-continuous function.

Theorem 3.3: Every strongly β wg-continuous function is continuous and thus strongly pre-continuous, sp-continuous and β wg-continuous. **Proof:** The proof follows from the definitions.

Theorem 3.4: Every strongly continuous function is strongly βwg-continuous but not conversely.

Proof: Follows from the definitions.

Example 3.5: Let $X = Y = \{a, b, c\}$ with topologies, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Define a function $f: X \to Y$ by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, and f(c) = b. Then f is strongly f by f(a) = a, f(b) = c, f(b) = c, f(b) = c, f(c) = c,

Theorem 3.6: Every strongly β wg-continuous function is a β wg-irresolute and thus every strongly continuous function is a β wg-irresolute but not conversely.

Proof: Let $f: X \to Y$ be a strongly β wg-continuous function and let V be a β wg-closed set in Y. Then $f^{-1}(V)$ is closed and hence β wg-closed in X, since every closed set is β wg-closed. Hence f is a β wg-irresolute. By Theorem 3.4, f is β wg-irresolute function.

Example 3.7: Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi, X, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a,b\}\}$. Define a function $f: X \to Y$ by f(a) = b, f(b) = a and f(c) = c. Then f is β wg-irresolute function but not strongly β wg - continuous, since for the β wg-closed subset $\{a,c\}$ of Y, $f^1(\{a,c\}) = \{b,c\}$ is closed but it is β wg-closed in X.

Theorem 3.8: Let (X, τ) be any topological spaces, (Y, σ) is a $_{\beta wg}T_b$ - space and let $f: X \to Y$ be any function. Then the following are equivalent:

- (i) f is strongly βwg-continuous
- (ii) f is continuous

Proof: (i) \Rightarrow (ii): Follows from the Theorem 3.3.

(ii) \Rightarrow (i): Let U be any β wg-open set in Y. Since Y is a $_{\beta$ wg}T_b – space, U is open in Y. Again since f is continuous, then we have $f^{-1}(U)$ is open in X. Therefore f is strongly β wg- continuous.

Definition 3.9: A topological space (X, τ) is called a β wg - space if the every subset in it is β wg-closed. i.e., β wgC (X, τ) = P(X).

Example 3.10: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ Then the space (X, τ) is β wg-space, because β wgC $(X, \tau) = P(X)$.

Theorem 3.11: Let X be discrete topological space and Y be a β wg-space and f: X \rightarrow Y be a function.

Then the following statements are equivalent:

- (i) f is strongly continuous.
- (ii) f is strongly βwg-continuous.

Proof: (i) \Rightarrow (ii): Follows from the Theorem 3.6.

(ii) \Rightarrow (i): Let V be any β wg-open set in Y. Since Y is β wg-space, V is a β wg-open subset of Y and by hypothesis, $f^1(V)$ is open in X. But X is a discrete topological space and so $f^1(V)$ is also closed in X. That is $f^1(V)$ is both open and closed in X and hence f is strongly continuous.

Remark 3.12: The concept of strongly β wg-continuity and strongly g-continuity are independent of each other as shown in the following examples.

Example 3.13: Let $X = \{a, b, c\} = Y$ with topologies, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Define a function $f: X \to Y$ by f(a) = b, f(b) = a and f(c) = c. Then f is strongly g-continuous but not strongly g-continuous, since for the g-closed subset $\{a,b\}$ in Y, $f^{-1}(\{a,b\}) = (a,b\}$ is not closed in X.

Example 3.14: Let $X = Y = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a,b\}\}$. Define a function $f: X \to Y$ by f(a) = b, f(b) = a and f(c) = c. Then f is strongly g - continuous but not strongly g - continuous, since for the g-closed set g-closed set g-closed in g-clos

Now, we derive decomposition of strongly βwg-continuous functions in the following

Theorem 3.15: The composition of two strongly β wg - continuous functions is again a strongly β wg - continuous function.

Proof: Let $f: X \to Y$ and $g: Y \to Z$ be any two strongly βwg - continuous functions. Let U be βwg - closed set in Z. Since g is strongly βwg - continuous, $g^{-1}(U)$ is closed set in Y. Again, since f is strongly βwg - continuous, $f^{-1}(g^{-1}(U))$ closed in X. But $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$. Thus, g o f is strongly βwg -continuous function.

Theorem 3.16: Let $f: X \to Y$ and $g: Y \to Z$ be any two functions. Then their composition gof: $X \to Z$ is strongly β wg-continuous.

- (i) if g is strongly βwg continuous and f if is strongly g-continuous.
- (ii) if g is β wg-irresolute and f if is strongly β wg-continuous.
- (iii) if g is strongly βwg-continuous and f is continuous.

Proof: The proof follows from the definitions.

Theorem 3.17: Let $f: X \to Y$ and $g: Y \to Z$ be any two functions such that gof: $X \to Z$. Then

- (i) gof is β wg-irresolute if f is β wg-continuous and g is strongly β wg-continuous.
- (ii) gof is strongly βwg-continuous if g is strongly βwg-continuous and f is strongly βwg- continuous.
- (iii) gof is continuous if g is continuous and f is strongly β wg-continuous.
- (iv) gof is βwg-irresolute if g is strongly βwg-continuous and f is βwg-irresolute.

Proof: Obvious

We define the following

Definition 3.18: A function $f: X \to Y$ is called perfectly β wg-continuous if the inverse image of every β wg-closed set in Y is both open and closed in X.

Theorem 3.19: Every perfectly βwg-continuous function is strongly βwg-continuous but not conversely.

Proof: Let $f: X \to Y$ be a perfectly β wg-continuous function. Let U be a β wg - open set in Y. Then $f^{-1}(U)$ is clopen set in X. Therefore $f^{-1}(U)$ open set in X. Hence, f is strongly β wg - continuous function.

Example 3.20: Let (X,τ) be as in the Example 2.3.114.Define a function $f: X \to Y$ by f(a) = a, f(b) = c, and f(c) = b. Then the function f is strongly β wg - continuous but not perfectly β wg - continuous function, since for the β wg - closed set $\{b, c\}$ in Y, $f^{-1}(\{b,c\}) = (b,c\}$ is closed but not open in X.

Theorem 3.21: Every perfectly βwg-continuous function is continuous but not conversely.

Proof: Consider a perfectly β wg-continuous function $f: X \to Y$. Let V be an open set in Y. Since f is perfectly β wg-continuous function, $f^1(V)$ is clopen set in X. Therefore $f^1(V)$ is open set in X. Hence f is continuous function.

Example 3.22: Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Then the identity function $f: X \to Y$ is continuous but not perfectly β wg-continuous function, since for the β wg-closed set $\{c\}$ in Y, $f^1(\{c\}) = \{c\}$ is closed but not clopen in X.

Theorem 3.23: Every perfectly βwg-continuous function is perfectly continuous but not conversely.

Proof: Consider a perfectly β wg-continuous function $f: X \to Y$. Let U be an open set in Y. Since f is perfectly β wg-continuous function, $f^{-1}(U)$ is clopen set in X. Hence f is perfectly continuous function.

Example 3.24: Let $X = Y = \{p, q, r\}$, $\tau = \{\phi, X, \{p\}, \{q, r\}\}$ and $\sigma = \{\phi, Y, \{p\}\}$. Define an identity function $f: X \to Y$ by f(p) = p, f(q) = q, and f(r) = r. Then the function f is perfectly continuous but not perfectly f by g-continuous function, since for the f by g-open set f by f in f is neither closed nor open set in f.

Theorem 3.25: If a function f: $X \to Y$ is perfectly continuous and Y is $_{\beta wg}T_b$ –space, then f is perfectly βwg -continuous function.

Proof: Assume that G is a β wg-open set in Y. Then G is open set in Y as Y is $_{\beta$ wg}T_b – space. Then $f^1(G)$ is clopen set in X as f is perfectly continuous function. Therefore f is perfectly β wg-continuous function.

Theorem 3.26: For a discrete topological space X and Y be any topological space. Then for the function $f: X \to Y$ the following results are equivalent:

- (i) f is perfectly β wg-continuous.
- (ii) f is strongly β wg-continuous.

Proof: (i) \Rightarrow (ii): Follows from the Theorem 3.19.

(ii) \Rightarrow (i): Let B be any β wg - open set in Y. By hypothesis, $f^1(B)$ is open set in X. But X is a discrete topological space and so $f^1(B)$ is closed in X. Therefore is $f^1(B)$ is both open and closed in X. Hence f is perfectly β wg-continuous function.

Theorem 3.27: Let $f: X \to Y$ and $g: Y \to Z$ be any two functions. Then their composition gof: $X \to Z$ is perfectly β wg-continuous.

- (i) if f and g are perfectly βwg-continuous function.
- (ii) if g is strongly β wg-continuous and f is perfectly β wg-continuous.
- (iii) if f is perfectly βwg-continuous and g is βwg-irresolute

Proof: The proof is straight forward.

Definition 3.28: A function f: $X \to Y$ is called completely β wg-continuous if the inverse image of every β wg-closed set in Y is regular closed in X.

Theorem 3.29: A function $f: X \to Y$ is called completely β wg-continuous if and only if the inverse image of every β wg-open set in Y is regular-open in X.

Proof: Obvious.

Theorem 3.30: If a function f: $X \to Y$ is called completely β wg-continuous then f is continuous.

Proof: Let $f: X \to Y$ be a function. Let H be an open set in Y. Since f is completely β wg-continuous function, $f^1(H)$ is regular open set in X. So $f^1(H)$ is open set in X. Hence f is continuous function.

However the reverse implication is not possible as seen from the following example.

Example 3.31: Let $X = \{a, b, c\} = Y$ with topology, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$. Then the identity function $f: X \to Y$ is continuous but not completely β wg-continuous function, since for the β wg-closed set $\{c\}$ in Y, $f^1(\{c\}) = \{c\}$ is not regular closed set in X but it is closed in X.

Theorem 3.32: Every completely βwg-continuous function is completely continuous function.

Proof: Let $f: X \to Y$ be a completely β wg-function. Let U be an open set in Y. Then U an open set in Y. Since f is completely β wg-continuous function, $f^1(U)$ is regular open set in X. Hence f is completely continuous function.

The converse of the above theorem need not be true as seen from the following example.

Example 3.33: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$ be the topologies on X and Y respectively. Then the identity function $f: X \to Y$ is completely continuous but not completely β wg-continuous. Since for the β wg-open set $\{c\}$ in Y, $f^1(\{c\}) = \{c\}$ is not regular open in X.

Theorem 3.34: Every completely βwg-continuous then f is strongly βwg-continuous but not conversely.

Proof: Let $f: X \to Y$ be a completely β wg- continuous function. Let U be a β wg-open set in Y. Since f is completely β wg-continuous function, $f^1(U)$ is regular open set in X. But every regular open set is open and hence $f^1(U)$ is open in X. Hence f is strongly β wg-continuous function.

The converse of the above theorem need not be true as seen from the following example.

Example 3.35: Let (X, τ) be as in the Example 3.5. Define a function $f: X \to Y$ by f(a) = a, f(b) = c, and f(c) = b. Then the function f is strongly β wg - continuous but not completely β wg-continuous function, since for the β wg-closed set $\{b, c\}$ in $Y, f^1(\{b,c\}) = (b,c\}$ is not regular closed but it is closed in X.

Theorem 3.36: If a function f: $X \to Y$ is completely continuous and Y is $_{\beta wg}T_b$ -space, then f is completely βwg -continuous.

Proof: Assume that G is a β wg-open set in Y. Then G is open set in Y as Y is $_{\beta$ wg}T_b – space. Then f^1 (G) is clopen set in X as f is perfectly continuous function. Therefore f is perfectly β wg-continuous function.

Theorem 3.37: Let $f: X \to Y$ and $g: Y \to Z$ be any two functions such that gof: $X \to Z$. Then

- (i) gof is completely βwg-continuous if f is completely continuous and g is completely βwg-continuous.
- (ii) gof is completely βwg-continuous if g is βwg-irresolute and f is completely βwg-continuous.
- (iii) gof is completely βwg-continuous if f is completely βwg-continuous and g is strongly βwg-continuous.

Proof: Follows from the definitions.

IV. STRONGLY β wg-CLOSED FUNCTIONS AND STRONGLY β wg-OPEN FUNCTIONS

Next, we introduce strongly βwg-closed and strongly βwg-open maps and investigate some of their properties in the following

Definition 4.1: A function f: $X \to Y$ is called strongly β wg-closed (resp. strongly β wg-open) function if the image of every β wg-closed (resp. β wg-open) set in X is β wg-closed (resp. β wg-open) set in Y.

Theorem 4.2: If a function $f: X \to Y$ is called strongly β wg-closed then it is β wg-closed but not conversely. **Proof:** Obvious.

Example 4.3: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, X, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Then the identity function $f: X \to Y$ is completely but not completely β wg-continuous. Since for the β wg-closed set $\{a,c\}$ in X, $\{(a,c)\} = \{a,c\}$ is not closed set in Y.

Theorem 4.4: The composition of two strongly βwg-closed functions is again a strongly βwg-closed function.

Remark 4.5: Strongly β wg-closed functions and β wg-irresolute functions are independent of each other as seen from the following examples.

Example 4.6: Let $X = Y = \{a, b, c\}$ with topologies, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Then the identity function $f: X \to Y$ is strongly β wg-closed but not β wg-irresolute. Since for the β wg-closed set $\{c\}$ in Y, $f(\{c\}) = \{c\}$ is not β wg-closed in X.

Example 4.7: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. Define a function $f: X \to Y$ by f(a) = a, f(b) = c, and f(c) = b. Then f is β wg-irresolute but not strongly β wg-closed. Since for the β wg-closed set $\{a,c\}$ in X, $f(\{a,c\}) = \{a,b\}$ is not β wg-closed in Y.

Theorem 4.8: A function $f: X \to Y$ is a strongly β wg-closed if and only if for each subset B of Y and for each β wg-closed set U of X containing $f^1(B)$, there exists a β wg-open V set such that $B \subseteq Y$ and $f^1(V) \subseteq U$.

Proof: Necessary: Suppose $f: X \to Y$ is a strongly βwg -closed function. Let B be any subset of Y and U be a βwg -closed set of X containing $f^1(B)$. Put $V = Y - f^1(U)$ Then V is βwg -open set in Y containing B such that $f^1(V) \subseteq U$.

Sufficiency: Let F be any β wg - closed set of X. Then $f^1(Y-f(U)) \subseteq X-F$. Put $B = Y - f^1(F)$. We have $f^1(B) \subseteq X-F$. Also X-F is β wg-open in X and $f^1(V) \subseteq X-F$. Therefore we have $f^1(F) = Y-V$ and hence f(F) is β wg-closed set in Y. Therefore f is a strongly β wg-closed function.

Theorem 4.9: If f: $X \to Y$ is αg -irresolute and pre- β -closed, then f is strongly βwg -closed function.

Proof: Let A be a β wg-closed set in X. Let V be any α g-open set in Y containing f(A). Then $A \subseteq f^1(V)$. Since f is α g-irresolute, $f^1(V)$ is α g-open set in X. Again since A is β wg-closed in X, $cl(A) \subseteq f^1(V)$ and hence $f(A) \subseteq f(\beta cl(A)) \subseteq V$. As f is pre- β -closed and $\beta cl(A)$ is β -closed in X, $f(\beta cl(A))$ is β -closed in Y and hence $\beta cl(f(\beta cl(A))) \subseteq C$. This shows that f(A) is β wg-closed set in Y. Hence f is strongly β wg-closed.

Theorem 4.10: Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that gof: $X \to Z$. Then

- (i) gof is β wg-closed if f is closed and g is strongly β wg-closed.
- (ii) gof is β wg-closed if f is closed and g is α g-irresolute and pre- β -closed.
- (iii) g is β wg-closed if f is continuous surjection and gof is strongly β wg-closed.
- (iv) gof is β wg-closed if f is strongly β wg-closed and g is strongly β wg-closed.

Proof: (i) By Theorem 4.2, g is β wg-closed function. Let F be a closed set in X. Since f is closed, then f(F) is closed in Y. Therefore g(f(F)) is β wg-closed in Z as g is β wg-closed function. That is gof(F) is β wg-closed set in Z. Hence gof is β wg-closed function.

- (ii) By Theorem 4.9, g is strongly Bwg-closed function. Hence by (1), gof is Bwg-closed.
- (iii) Let F be a closed set of Y. Since f is continuous, $f^1(F)$ is closed in X and hence $f^1(F)$ is β wg-closed in X. Since gof is strongly β wg-closed, $(gof)(f^1(F))$) is β wg-closed in Z. Again since f is surjective, g(F) is β wg-closed in Z. Hence g is β wg-closed.

(iv) Follows by (i).

Further, we define \(\beta wg\)-regular and \(\beta wg\)-normal spaces in the following

Definition 4.11: A space (X, τ) is said to be β wg-regular if for every closed set F and a point $x \notin F$, there exist disjoint β wg-open sets U and V such that $F \subseteq U$ and $x \in V$.

Theorem 4.12: Every β wg-regular space is regular space.

Proof: obvious.

The converse of the above theorem need not be true as seen from the following example.

Example 4.13: Let $X = \{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b,c\}\}$. Then the space (X, τ) is regular but not β wg-regular space.

Also, we define the followings

Definition 4.14: A topological space (X,τ) is said to be β wg-normal if for every pair of disjoint closed sets A and B, there exist disjoint β wg-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.15: Every βwg-normal space is normal, but converse is not true in general.

Proof: Let X is a β wg-normal space. Let A and B be a pair of disjoint closed sets in X. Since every closed set is β wg-closed. Therefore A and B are β wg-closed sets in X. Again, since X is β wg-normal, there exists a pair of disjoint open sets G and H such that $A \subseteq G$ and $B \subseteq H$. Hence X is β wg-normal space.

The converse of the above Theorem need not be true as seen from the following example

Example 4.16: Let (X,τ) be as in the Example 4.13. Then, clearly the space (X,τ) is normal space. But, it is not β wg-normal space.

V. ACKNOWLEDGMENT

The authors would like to gratitude thanks the referees for their useful comments and suggestions.

REFERENCES

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β -open sets and β -continuous mappings, Bull. Fac.Sci. Assiut Univ., 12(1983), 77-90.
- [2] D. Andrijevic, Semi-preopen sets, Mat Versnik, 38(1) (1986), 24-32.
- [3] S.P. Arya and R. Gupta, On strongly continuous mappings, Kyungpook Math., Jl., 14(1974), 131-143.
- [4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in Topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math.,74 (1972), 233-254.
- [5] S.G. Crossely and S.K. Hildebrand, Semi-topological properties, Fund. Math., 12(1991), 5-13.
- [6] R. Devi, K. Balachandran and H. Maki, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14(1993), 41-54.
- [7] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960), 269-279.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.Monthly,70(1963), 36-41.
- [9] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2) (1969), 89-96.
- [10] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in Topological spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 13-21.
- [11] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 33-42.
- [12] S.R. Malghan, Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.
- [13] A.S. Mashhour, M.E.A. El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. And Phys. Soc. Egypt, 53(1982), 47-53.
- [14] A.S. Mashhour, A. Hasanein and S.N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hung., 41(3-4) (1983), 213-218.
- [15] A.S. Mashhour, M.E.A. El-Monsef and S.N. El-Deeb, On pre topological spaces, Bull. Mathe. de la Soc.Sc. Math. de la R. S. de Roumanie Tome., 28(76) (1984),39-45.
- [16] Govinappa. Navalagi and Kantappa.M.Bhavikatti, Beta Weakly Generalized Closed sets in Topology, Journal of Computer and Mathematical Sciences, Vol.9, Issue 5, (May 2018), 435-446.
- [17] Govinappa. Navalagi and Kantappa.M.Bhavikatti, On βwg-Continuous and βwg-Irresolute Functions in Topological Spaces, IJMTT, Vol. 57, Issue 1, (May2018), Pp 9-20.
- [18] O. Njastad, On some classes of nearly open sets, Pacific Jl. Math., 15 (1965), 961-970.
- [19] T. Noiri, Super continuity and some strong forms of continuity, Indian Jl.Pure Appl. Math., 15(1984), 241-250.
- [20] P.G. Patil, T.D. Rayanagoudar and S.S. Benchalli, Generalization of new continuous functions in topological spaces, CUBO A Mathematical Journal, 15(3) (2013), 69-76.
- [21] P. Sundaram, Studies on generalizations of closed sets and continuous maps in Topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, (1991).
- [22] M.K.R.S. Veerakumar, g*-preclosed sets, Acta Ciencia Indica, 28(1) (2002), 51-60.